Improving the Efficiency of Color Image Segmentation using an Enhanced Clustering Methodology
نویسندگان
چکیده
The findings of image segmentation reflects its expansive applications and existence in the field of digital image processing, so it has been addressed by many researchers in numerous disciplines. It has a crucial impact on the overall performance of the intended scheme. The goal of image segmentation is to assign every image pixels into their respective sections that share a common visual characteristic. In this paper, the authors have evaluated the performances of three different clustering algorithms normally used in image segmentation – the typical K-Means, its modified K-Means++ and their proposed Enhanced Clustering method. The idea is to present a brief explanation of the fundamental working principles implicated in these methods. They have analyzed the performance criterion which affects the outcome of segmentation by considering two vital quality measures namely – Structural Content (SC) and Root Mean Square Error (RMSE) as suggested by Jaskirat et al., (2012). Experimental result shows that, the proposed method gives impressive result for the computed values of SC and RMSE as compared to K-Means and K-Means++. In addition to this, the output of segmentation using the Enhanced technique reduces the overall execution time as compared to the other two approaches irrespective of any image size. Improving the Efficiency of Color Image Segmentation using an Enhanced Clustering Methodology
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملImage Segmentation using Improved Imperialist Competitive Algorithm and a Simple Post-processing
Image segmentation is a fundamental step in many of image processing applications. In most cases the image’s pixels are clustered only based on the pixels’ intensity or color information and neither spatial nor neighborhood information of pixels is used in the clustering process. Considering the importance of including spatial information of pixels which improves the quality of image segmentati...
متن کاملPerformance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملImage Segmentation: Type–2 Fuzzy Possibilistic C-Mean Clustering Approach
Image segmentation is an essential issue in image description and classification. Currently, in many real applications, segmentation is still mainly manual or strongly supervised by a human expert, which makes it irreproducible and deteriorating. Moreover, there are many uncertainties and vagueness in images, which crisp clustering and even Type-1 fuzzy clustering could not handle. Hence, Type-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJAEC
دوره 6 شماره
صفحات -
تاریخ انتشار 2015